【導讀】一般來說,機器手有兩種普遍的設計流派。第一種是以完成某項工作為導向的簡單明了的高效機器手,依靠兩三根「手指」(所形成的鉗子)輕而易舉的完成許多工作。第二種是完全按照人類雙手進行精確模擬——擁有一根拇指的其他四根手指的設計,基于人類數(shù)百萬年進化而成的雙手去設計機器手,因為我們身邊所有的物體都是根據(jù)我們的雙手去設計的,所以如果希望機器人能夠盡可能做到更多事情,最好是擁有一雙像真人一樣的手。
鑒于真實人手內在的復雜性,在設計擬人仿生手時不可避免的采取了許多折中方案,讓它們正常工作的同時還保持了人手的外形。來自西雅圖華盛頓大學的ZheXu和EmanuelTodorov開創(chuàng)性的開發(fā)了一款有史以來最精細且運動最準確的擬人仿生手,它的終極目標是完全取代人類雙手。
關于設計一種新的機器手對他們的重要性,Xu表示:
「擬人機器手設計的常規(guī)方法是,用類似鉸鏈、聯(lián)動裝置和平衡環(huán)等零件來實現(xiàn)生物部件的機械化,從而將看似復雜的人體參照物進行了簡化。這種方法對于理解并模仿人手的運動原理有一定幫助,但不可避免的制造了一些人與機械手之間的不良差異,因為人手上大多數(shù)顯著的生物力學特征都在機械化的過程中被丟棄了。這些機器手和人手生物力學在本質上的不匹配阻礙了我們使用自然的手部運動來直接控制它們。因此,還沒有任何一只擬人機器人手可以達到人手的靈巧程度?!?/div>

Xu和Todorov決定從零開始他們的機器手項目,以盡可能精確的方式機械的復制人手。首先,他們通過激光掃描出了人手的骨骼,然后通過3D打印出匹配的人工骨骼,使他們能夠復制出我們人手所擁有的靈活的連接關節(jié)。
「例如,我們對生拇指的運動依靠于腕掌關節(jié)(CMC)中梯形骨的復雜形狀。由于梯形骨的不規(guī)則形狀,CMC關節(jié)軸沒有固定的精準位置。所以說,目前所有的擬人機器手都是采用傳統(tǒng)的機械連接,這種連接方式固定的旋轉軸。因此,這些傳統(tǒng)的機器手都無法還原自然的拇指運動。我們通過掃描尸體手骨架,3D打印了人工骨骼,并且該人工手指關節(jié)的運動范圍、剛度、和動態(tài)行為都非常接近人手。我們的機器手設計獨一無二的保留了重要的人手生物力學信息,達到了解剖級別?!?/div>
關節(jié)韌帶(身體用來固定關節(jié)且控制它們活動范圍的部分)的材料使用了高強度的Spectra帶,并帶有激光切割的橡膠板來代替增加關節(jié)依從性的軟組織。伸肌和屈肌的肌腱(用來矯直和彎曲手指的部分)也由Spectra帶構成,同時用更多的激光切割橡膠板代替了腱鞘和伸肌腱帽,后者是通過包裹手指來使其應對靈活性和扭矩的復雜的蹼狀多層結構。UW(華盛頓大學縮寫)手的最后一部分構成是肌肉,它是由一排10個Dynamixel伺服系統(tǒng)組成,它們的電纜布線也緊密的模仿了人手的腕隧道。
除去工藝絕倫之外,我們還可以通過waldo遙控器去操縱UW手準確的模仿人手的各種抓拿動作。研究人員認為,因為他們的機器人動力學非常接近真實的人手,因此,用戶可以在沒有任何力反饋的情況下用手進行復雜的操作。用戶也可以在研究人員歸因于與人手運動學高度匹配的機器手上,在零力回饋的情況下用手進行復雜的操作。
真正的關鍵在于:擬人機器手完全按照模擬人手來設計,這意味著它可以模擬人手的動作,這主要取決于它的構造,而非一種電腦編程。在遙控操作方面,它也有很多潛在優(yōu)勢,因為操作者可以更加無縫的利用自己雙手的靈活性。

更有趣的是,研究人員認為他們所研究的機器手可以用來「為肢體再生的研究做3D支架」。Xu解釋說:
「對義肢假手的控制主要依賴于人的大腦。因此,如果義肢的設計更加接近于生物本體,那同樣的神經(jīng)義肢技術就會更加有效。生物相容性材料現(xiàn)在已經(jīng)可以被打印成骨架,可生物降解的人造韌帶也可以被用來取代撕裂的前交叉韌帶,人類肌肉已經(jīng)成功地在培養(yǎng)皿內被培育出來,而且外周神經(jīng)在合適的條件下也可以再生。所有這些有前途的新技術都需要適合移植細胞生長的支架。我們將與生物學和組織工程學的研究人員合作,進一步探索仿生機器手在神經(jīng)義肢和肢體再生等新興領域作為生物制造設備/支架的潛力?!?/div>
華盛頓大學的XuZhe和EmanuelTodorov的「高仿生擬人機器手對假肢再生的設計」將于五月份在斯德哥爾摩五月份的ICRA(IEEEInternationalConferenceonRoboticsandAutomation)會議上呈現(xiàn)。
XuZhe目前是耶魯大學GRAB實驗室的博士后。
特別推薦
- 芯片級安全守護!800V電池管理中樞如何突破高壓快充瓶頸
- 功率電感器核心技術解析:原理、選型策略與全球品牌競爭力圖譜
- 鉭電容技術全景解析:從納米級介質到AI服務器供電革命
- 西南科技盛宴啟幕!第十三屆西部電博會7月9日蓉城集結
- KEMET T495/T520 vs AVX TAJ鉭電容深度對比:如何選擇更適合你的設計?
- 功率電感四重奏:從筆記本到光伏,解析能效升級的隱形推手
- 聚合物電容全景解析:從納米結構到千億市場的國產(chǎn)突圍戰(zhàn)
技術文章更多>>
- 村田開始量產(chǎn)村田首款0402英寸47μF多層陶瓷電容器
- 灣芯展2025預登記啟動!10月深圳共襄半導體盛宴
- 智能家居開發(fā)指南上線!貿(mào)澤電子發(fā)布全棧式設計資源中心
- 300mm晶圓量產(chǎn)光學超表面!ST與Metalenz深化納米光學革命
- 可變/微調電容終極指南:從MEMS原理到國產(chǎn)替代選型策略
技術白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
MOSFET
Mouser
Murata
NAND
NFC
NFC芯片
NOR
ntc熱敏電阻
OGS
OLED
OLED面板
OmniVision
Omron
OnSemi
PI
PLC
Premier Farnell
Recom
RF
RF/微波IC
RFID
rfid
RF連接器
RF模塊
RS
Rubycon
SATA連接器
SD連接器
SII
SIM卡連接器
友情鏈接(QQ:317243736)
我愛方案網(wǎng) ICGOO元器件商城 創(chuàng)芯在線檢測 芯片查詢 天天IC網(wǎng) 電子產(chǎn)品世界 無線通信模塊 控制工程網(wǎng) 電子開發(fā)網(wǎng) 電子技術應用 與非網(wǎng) 世紀電源網(wǎng) 21ic電子技術資料下載 電源網(wǎng) 電子發(fā)燒友網(wǎng) 中電網(wǎng) 中國工業(yè)電器網(wǎng) 連接器 礦山設備網(wǎng) 工博士 智慧農(nóng)業(yè) 工業(yè)路由器 天工網(wǎng) 乾坤芯 電子元器件采購網(wǎng) 亞馬遜KOL 聚合物鋰電池 工業(yè)自動化設備 企業(yè)查詢 工業(yè)路由器 元器件商城 連接器 USB中文網(wǎng) 今日招標網(wǎng) 塑料機械網(wǎng) 農(nóng)業(yè)機械 中國IT產(chǎn)經(jīng)新聞網(wǎng) 高低溫試驗箱
?
關閉
?
關閉